A Note on Maass-Jacobi Forms
نویسنده
چکیده
In this paper, we introduce the notion of Maass-Jacobi forms and investigate some properties of these new automorphic forms. We also characterize these automorphic forms in several ways.
منابع مشابه
Exact Formulas for Coefficients of Jacobi Forms
In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this...
متن کاملZagier-type dualities and lifting maps for harmonic Maass–Jacobi forms
The real-analytic Jacobi forms of Zwegers’ PhD thesis play an important role in the study of mock theta functions and related topics, but have not been part of a rigorous theory yet. In this paper, we introduce harmonic Maass–Jacobi forms, which include the classical Jacobi forms as well as Zwegers’ functions as examples. Maass–Jacobi–Poincaré series also provide prime examples. We compute thei...
متن کاملMaass-jacobi Forms over Complex Quadratic Fields
We use methods from representation theory and invariant theory to compute differential operators invariant under the action of the Jacobi group over a complex quadratic field. This allows us to introduce Maass-Jacobi forms over complex quadratic fields, which are Jacobi forms that are also eigenfunctions of an invariant differential operator. We present explicit examples via Jacobi-Eisenstein s...
متن کاملLocal and global Maass relations
We characterize the irreducible, admissible, spherical representations of GSp4(F ) (where F is a p-adic field) that occur in certain CAP representations in terms of relations satisfied by their spherical vector in a special Bessel model. These local relations are analogous to the Maass relations satisfied by the Fourier coefficients of Siegel modular forms of degree 2 in the image of the Saito-...
متن کاملLocal and global Maass relations (expanded version)
We characterize the irreducible, admissible, spherical representations of GSp4(F ) (where F is a p-adic field) that occur in certain CAP representations in terms of relations satisfied by their spherical vector in a special Bessel model. These local relations are analogous to the Maass relations satisfied by the Fourier coefficients of Siegel modular forms of degree 2 in the image of the Saito-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006